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This paper presents the application of Bounded Linear Stability Analysis (BLSA) method
for metrics-driven adaptive control. The bounded linear stability analysis method is used
for analyzing stability of adaptive control models, without linearizing the adaptive laws.
Metrics-driven adaptive control introduces a notion that adaptation should be driven by
some stability metrics to achieve robustness. By the application of bounded linear stability
analysis method the adaptive gain is adjusted during the adaptation in order to meet cer-
tain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated
for a 2"? order system that represents a pitch attitude control of a generic transport air-
craft. The analysis shows that the system with the metrics-conforming variable adaptive
gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis
time-window for BLSA is also evaluated in order to meet the stability margin criteria.

I. Introduction

Adaptive control laws are generally nonlinear and therefore stability robustness of adaptive control cannot
be analyzed by linear stability metrics in terms of phase and gain margins. These margins are designed into
linear control laws to provide robustness to account for system uncertainties such as modeling errors and
exogenous disturbances. The lack of stability metrics for adaptive control is a major challenge to enable
adaptive control laws to be adopted in production control systems. Metrics-driven adaptive control introduces
a notion that adaptation should be driven by some stability metrics to achieve robustness.! The bounded
linear stability analysis method is applied in order to analyze adaptive control in terms of the linear stability
concept by establishing an approximate linear equivalent system as a function of a mean square value of teh
input fucntion to the adaptive law.2 The method uses an error bound analysis to extract the dominant linear
components of the nonlinear adaptive laws without linearization. The idea is to seek a linear representation
that bounds a nonlinear adaptive law. This method can provide an understanding of the stability margin
of nonlinear adaptive control that can be used to establish limits on adaptive gains during adaptation to
ensure system robustness, and thus the adaptation is made to be metrics-driven.

II. Adaptive Control of a Second-Order System

Figure 1 shows the model-reference adaptive control (MRAC) architecture for a pitch attitude control of
a generic transport model (GTM) of a 2"%order system of aircraft. The plant model is given as

& = Ax + Bu (1)

0. : . . .
where x = [ p ] is the state vector, § and 6 are pitch angle and pitch rate respectively, A =

0 1
_qu Moc
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is assumed to be unknown, and B =

] is known.
e

According to R.C. Nelson,* Myq = My + Mg = (Cp, + Ciiy) %%‘jé, and M;, = Cs, Qlfé, where Ci,,,
Cm.,,, and Cs, are the pitching moment derivatives, ¢ is the mean aerodynamic chord, S is the wing area, ug
is the aircraft velocity along the x body axis, , and I, is the mass moment, and @ = %pug, where pis the air
density.

The output of the dynamic inversion u is defined as

u = (bTBn) ! (ij:m —bT A — ugq + upd) (2)
0 0 0 . .
where b = , Bp = and A4, = contain the nominal parameters for
1 6(—371 _Mq”dn _Man

the dynamic inversion, &, is a model-reference acceleration, u,q is the adaptive control signal, and u,q is a
proportional-derivative (PD) controller.
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Fig.1 MRAC Architecture for Pitch Model of Aircraft.

The PD controller u,q is defined as
upq = ke (3)

where k = [ kp kg ] is a gain vector with k, and kg being the proportional and derivative gains

respectively, and e = x,, — = is the tracking error.
The adaptive signal U,4 is parametrized by a linear-in-parameters matched uncertainty

Ugg = W 4)

where W is a weight matrix and « is the basis function, which in the case of this example is the same as
the state vector.
The adaptive law given below can be shown to be stable based on the Lyapunov stability proof.?

W = —Tze' Pb (5)
where I' > 0 is an adaptive gain, and P solves the Lyapunov equation as follows

PA 4+ ATP=-Q

0 1 . . . . . . .
where A, = is Hurwitz, and @ = I > 0 is a symmetric positive-definite matrix.

-k, —kq
Figure 2 shows the tracking performance of the adaptive control system. In order to simulate an un-
certainty, a 30% reduction in the pitch damping is imposed. A constant adaptive gain of I' = 100 is used.
Figure 2 shows that the tracking performance of the adaptive system with the parameteric failure is perfectly
acheived.
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Fig.2 Tracking Performance with Reduced Pitch Damping.

III. Bounded Linear Stability Analysis (BLSA)

Stability of nonlinear adaptive control is usually analyzed by the Lyapunov method. The traditional
linear stability margin, phase margin and gain margin concept, may be extended to nonlinear adaptive
control if it could be represented by some linear approximations.The bounded linear stability analysis seeks
a piecewise linear equivalent approximation of nonlinear adaptive control in terms of a mean square value
of the input function to the adaptive law over a short time window during which the linear time invariant
(LTT) concept of stability margins could be analyzed to provide a method for adjusting the adaptive gain
for the next time window.

The stability of the adaptive law can be analyzed by a conservatively bounded linear stability using a
linear equivalent adaptive law? as follows.

Let W*be the constant ideal weight and W =W — W*be the weight variation, therefore

d (&7 T
- < _
= (W 3:) < —Tagh' Pe+ A, 6)

where A; > 0 is a constant that represents a bound, and «p > 0 is a mean square value of the input
function to the adaptive law such that

1 t+T 1 n—1
ag < T/t ' dT%EkZ:OxTI(t—I—kT) (7)

where T' = nAt is the analysis time window and n is the number of time steps At.

\T
Since ugq = (W* + W) x, then the linear bound to the adaptive law (Eq.5) is rewritten as

d
7 (Uga) = —Taph" Pe + Ay
or
P. P,
Uad(s) = —FaOMGG(s) 4+ Ay
s

where in the Laplas transform O.(s) = O.(s) —©(s) is the error, ©.(s) is the command, and A, is a constant
bound .

Using the bounded linear stability analysis approach the open-loop transfer function between the output
O(s) and the error ©.(s) could easily be derived as shown below. In deriving the open-loop transfer function,
the parametric uncertainty in the pitch damping ¢ is included.
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Substituting Eq. into Eq.2 and then into Eq.1 and taking the Laplace transform results in

. 0 Pyos+ Pio 0 (CH
sX=(4A An)X+Fa0l1 X . O.(s) + Jx{kp kd} 50, + sz + Ay (8)
Az
Uqd Upd

Substituting for X (s) = , Eq.8 becomes

s20(s) = — (Mga — My, 4, + Wa(t)) sO(s) — (Wi(t)) O(s) + Tag (% + P22> Oc(s)+ (kp + kas) Oc(s) + As
(9)

where W1 (t), Wa(t) are the adaptive weights, and £ contains the failure that would eventually be corrected
by the adaptive weight Wy(t).
The system open-loop transfer function is thus obtained as

g(s) . kd82 + (kp =+ 1—‘040P22) s+ LagPia
Oc 3 + (Mg — Mg, e, + Wa(t)) s> + (Wi(t)) s

If the adaptation is such that it results in a perfect model matching condition so that Wa(t) = Mys —
M, &, , then the open-loop transfer function in Eq. (10) becomes an ideal transfer function:

(10)

N kd82 + (kp + 1—‘040P22) S+ Paoplg
= 33

G*(s)

(11)

We note that both transfer functions are functions of the I' and «g. The third possible open-loop transfer
function is obtained when the adaptive weights reach their steady state values, assuming that the adaptation
converges. Then the transfer function with constant weights is obtained as:

@( )= kgs + ky
8= §2 + (28wy, — 2&pwn, + Wa) s+ W1

The frequency response of the three open-loop transfer functions (Eq. 10,11,12) is shown in figure 3.
The adaptive weights in the transfer functions of equations 10 and 12 are chosen after the adaptation is
converged. Adaptive control system with constant adaptive gain I' = 100 is shown later to only tolerate less
than 0.1sec of time delay and have a phase margin as low as 5deg. Figure 3 indicates that the open-loop
transfer function with constant weights G(s) provides a non-practical prediction for phase margin and time
delay margin. Therefore G(s) should not be used for the purpose of metrics-driven adaptive control analysis.
On the other hand, both the open loop transfer function G(s) and the ideal transfer function G*(s) provide
very close frequency responses, and both predict very small phase margin of about 4 deg corresponding to
0.01 sec time delay margin.

(12)

Bode Diagram
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Fig3. Frequency Response Comparison at the end of Adaptation.

Although the adaptive law provides a viable tracking performance for a system with parametric un-
certainty as shown in figure 2, the system is not sufficiently robust to other types of uncertainty such as
unmodeled dynamics or time delay due to the very low predicted stability margins. By adjusting the adap-
tive gain in order to achieve certain criteria for phase margin, adaptation is made to be metrics-driven. Since
G(s) contains the unknown parameter “Mgys — Mg, 4, + Wa(t)” due to the parametric failure, G*(s) is most
suited for adjusting the adaptive gain and the process is explained in more details in the next section.

IV. Metrics-Driven Adaptive Control

The ideal transfer function (Eq.11) contains all known parameters and therefore it could be used in order
to adjust the adaptive gain I'" during the adaptation in order to meet certain phase margin requirements.

The frequency response of the ideal transfer function (Eq.11) is used to define the phase margin ¢,,and the
corresponding gain corssover frequency wy.

By definition, the phase margin is described as:®
Om = arg [G*(jwy)] + 11

or

(kp + 1—‘040P22) Wy

m = arct =) —m/2 13

10) arctan ( TaoPrz — ka2 w/ (13)
and the corresponding gain-crossover frequency w, is defined by the following expression:®

G (jwg)| =1

or

TagPio — kqw?)” + (k, + Tag P )? w2

(PagPra dg) (Kkp 0P22) 9 _q (14)

4 6
wg—l—wg

The «p pareameter is computed according to Eq.7 within a given time window 7T'. Using this value and a
desired phase-margin ¢,,, equations 13 and 14 are solved together using a nonlinear root search to calculate
wg and the appropriate adaptive gain I'. The calculated I' is then used for adaptation for the next time
window. With the purpose of reaching a desired phase-margin ¢,,, this process is repeated for each time
window until I" should reach a steady state value. Therefore, the adjusted adaptive gain I'(¢) instead of the
constant gain I' is used in the adaptive control. The analysis result is illustrated in the simulation section.

However, analysis of the convergence of the system of nonlinear equations (13 and 14) shows that a
solution for I' and w, always exist for the selection of the given phase margins of ¢,, < 65deg, and there
would be no solution for I' or w, with the phase margins of ¢,, > 65deg. This fact is shown in figure 4,
which demonstrates that only the graphs for the range of phase margins of ¢,, = 10 — 65 deg intersect with
the graph for the corresponding gain crossover frequency w, and no solution is obtained out of this range.
This analysis in figure 4 is shown for ay = 1, while same result is obtained for diffretent values of ay.
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Fig. 4 Limit on the Desired ¢,, Criteria for the Metrics-Driven Adaptive Control.

V. Simulation

In order to illustrate the metrics-driven adaptive control with the BLSA method a simulation is performed
for a 2"¢ order pitch attitude control for a generic transport model of aircraft at mach M = 0.6 and altitude
h = 20,000 ft. As mentioned in the previous section, the phase margin conforming adjusted adaptive gain I"
is obtained from the analysis of the ideal open-loop transfer function (Eq.11) with the purpose of achieving
a desired phase margin ¢,, = 45deg. The adjusted adaptive gain I instead of the constant gain is then used
in the adaptive control. Figure 5 shows aq that is obtained over the time-window of T' = 1.5sec, and also
the adjusted adaptive gain I with the starting value of I' = 100, and the steady state value of I' = 1.33.
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Figh. ap Parameter and Phase Margin Conforming Variable Adaptive Gain I'.
Figure 6 shows the effect of the adjusted adaptive gain I' versus the constant adaptive gain I' = 100 on

the stability margin analysis. The phase margin ¢,, and time-delay margin T'D,,, prediction by BLSA are
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calculated from the open-loop transfer function G(s) (Eq.10). The calculated phase margin ¢,, with the
variable T" is shown to reach the desired criteria ¢, = 45deg. Also time-delay margin T'D,, is shown to be
much higher with the varying adaptive gain I', which indicates that the adaptive system with the adjusted
I" should be able to tolerate much more uncertainty in the systerm.

In order to analyze the effectiveness of the metrics-driven adaptive control, system with added uncertainty
is evaluated as time delay is introduced in the simulink model right after the control law and before the plant.
In figure 7 the left plot shows that the adjusted I' as compared to the constact I' does increase the time-delay
margin of the system up to 15 times. The right plot shows the result of the calculation of time-delay margin
by BLSA method with the adjusted and fixed I', and the analysis shows that BLSA provides a conservative
yet practical prediction of time-delay margin with respect to the actual tolerated time-delay of the system.

50
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Fig 6. Stability Margin Comparison with the Adjusted and Constant Adaptive Gain T'.

15— max. time-delay — 15 time—delay margin
tolerance by the system calculated by BLSA

0
adjustedl" r=100 adjusted " =100

Fig 7. Analysis of Time Delay Margin Prediction with BLSA, and Max. Added Uncertainty to the System.

Simulation of the system with the adjusted adaptive gain I' as shown in figure 7, indicates that system
can tolerate as much as 1.48 sec of time delay that is added after the control law. However, with the constant
adaptive gain I' = 100, system can only tolerate up to 0.07 sec of added time delay. Figure 8 illustrates the
tracking performance with the introduced maximum time delay.
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Fig 8. Tracking Performance with the Introduced Maximum Time Delay.

Performance of the adaptive weights are shown in figure 9 to demonstrate the effect of the adjusted
adaptive gain IT" .

-0.05

—0.1 L L
0 5 10 15

Fig 9. Performance of the Adaptive Weights with Adjusted and Fixed T'.

Now, the choice of time-window 7' is evaluated, over which the oy parameter is obtained and the analysis
is performed. The size of the analysis time-window 7' has a direct affect on how frequent adaptive gain I"
is adjusted. As illustrated in figure 10, the choice of a very small time-window like 7" = 0.1sec causes the
adaptive gain I' to be changed very frequently. The very fast changes in the adaptive gain I' cause a poor
convergence of the parameters since the adaptive law will not have enough time for learning. However, the
analysis with a large time-window 7T is impractical and does not capture the transient. Therefore, a trade-off
should be made in choosing the proper analysis time-window 7.
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Figl0. Effect of the Analysis Time-Window T on the Adjusted Adaptive Gain T'.

As explained before, the ideal open loop transfer function (Eq. 11) that is obtained as a result of perfect
parameter estimation is used to calculate the varying adaptive gain I' in order to acheive a certain phase
margin ¢, criteria. The adjusted adaptive gain I" is used in the adaptive control, and the true off-nominal
open loop transfer function (Eq. 10) is used to examine the stability margins. Based on the choice of the
time-window T, if the adjusted adaptive gain I' does not cause perfect parameters convergence then the
behavior of the system is affected and the desired phase margin is not reached. Figure 11 illustrates the
effect of time-window 7' on the parametric failure related index in the denominator of the true off-nominal
open loop transfer function , Mys — My, 4, + Wa(t), which is supposed to reach zero after the adaptive
parameters are convergenced. The analysis with different time-windows 7' shows that the best parameter
convergence is obtained with 7" = 1.5sec.
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-0.08r

i i
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Figll. Effect of the Analysis Time-Window 7" on Parameter Convergence.

Figure 12 illustrates the effect of time-window 7' on the analysis of stability margins, where the desired
phase margin ¢,, is completely achieved with 7" = 1.5sec, and since the much smaller time-window of
T = 0.1sec does not provide perfect parameter convergence, therefore the desired stability margin is not
fully achieved.
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Figure 12 demonstrates a similar analysis as shown in figure 7, but with different time-windows 1" =
0.1, 1sec. The left plot illustrates that the max time-delay system can take is about %25 larger with
T = 1sec as compared to T = 0.1 sec. Also, the right plot shows that the time-delay margin calculated by
BLSA is almost %7 higher with 7" = 1 sec.

max. time-delay time—delay margin

tolerance by the system s calculated by BLSA

05

T=1sec

Fig.13 - Time-Delay Margin Analsys with Two Different Time-WindowsT = 0.1, 1 sec.

VI. Discussion

By using the Bounded Linear Stability Analysis (BLSA) concept, a metrics-driven learning paradigm for
adaptive control system is proposed. With BLSA method a piecewise linear upper bound for the adaptive
law is formed, with which the true and ideal open-loop transfer functions are formed. With the goal of
achieving certain phase margin ¢,, criteria, the ideal transfer function is used in order to adjust the adaptive
gain I" during adaptation. As demonstrated in figure ........ , the analysis indicates that the adaptive gain I’
can always be adjusted for a specific desired phase margin on the range of ¢,, < 65deg.

By using the adjusted adaptive gain I' during adaptation, the stability margin analysis is performed
for the true open loop transfer function (Eq.......... ). The analysis shows that the desired phase margin
¢m = 45deg and a much higher time-delay margin 7'D,, = 0.48 sec is acheived, figure......... . While by
using a fixed adaptive gain I' = 100, a phase margin and time-delay margin as low as ¢, = 4.9deg and
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TD,, = 0.01 secis obtained respectively. Furthermore, by adding a time-delay in the simulink model between
the control law and plant, system with the phase margin conforming adjusted adaptive gain I' is shown to
take as much as 1.48 sec time-dalay and still remain stable. While system with the fixed adaptive gain
I" = 100 only takes as much as 0.07 sec time-delay. Therefore, system with the metrics-conforming variable
adaptive gain I' becomes up to 20 times more robust to unmodeled dynamics or time delay.

The effect of the size of analysis time-window indicates that a trade-off should me made between a
large time-window that does not properly capture transients and a small time-window that causes poor
convergence of the adaptive parameters, figure..... .

The analysis presented in this paper

VII. Conclusion

The application of bounded linear stability analysis on adaptive systems is evaluated in order to construct
a methodology for establishing a metrics-driven learning paradigm that preserves margins during adaptation
by adjusting the adaptive gain. With the purpose of achieving certain phase margin requirement, the adaptive
gain is re-calculated over a time-window during adaptation. Analysis on the 2"¢ order system with pitch
attitude control of the generic transport aircraft proves that with the adjusted adaptive gain I' the system
robustness to uncertainty is increased significantly, and the desired phase margin is achieved. Analysis and
evaluation of the importance of selecting the proper time-window 7' is presented. Further work will be done
on elaborating on the metrics-driven learning paradigm, and also applying the method to realistic systems
with different failure scenarios.
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